Advanced Environmental Systems Analysis Academic Year 2020-21 September 8, 2021 Prof. Giorgio Guariso Prof. Matteo Giuliani

1 st Module		
Name:		
ID number:		
Signature:	·	

IMPORTANT

- The duration of this part is **60 min**.
- Books, notes, handouts and any other material cannot be used.
- Use **only these sheets**, including back. Any additional submitted sheet will not be considered in the assessment.

QUESTION 1

15/30

A town is located few kilometres from an industrial plant. The plant is on a flat terrain and emits SO_2 to produce 30 units of energy. During the past winter, with an average wind speed of 3 m/s, the production cycle required 1 ton of fuel per unit of energy with an emission factor of 30 g/s per ton of fuel used. This resulted in an average ground level concentration of SO_2 in the town equal to 50 μ g m⁻³, well above the limit set by the local authority (20 μ g m⁻³).

For the coming spring, the meteo situation is expected to remain similar except for the wind speed that will probably raise to 5 m/s. You are asked to determine a new fuel with a reduced sulphur emission and an efficiency of 1,2 ton per unit of energy, in order to bring the concentration down to the required limit value (20 µg m⁻³).

What is the value of the required sulphur reduction?

Is it possible that some other areas will still suffer from concentrations above the limit? Why?

QUESTION 2

7.5/30

Which changes of temperatures high	do we expect her than avera	in the BOD age?	-DO balance	e of a rive	r in summer	condition,	i.e., w
QUESTION 3 7.5/30							
Which are the mo	ost relevant ch	aracteristics	of the SWAT	Γ integrated	d model?		